(SP23) MCB 480 – MOLECULAR BASIS OF EUKARYOTIC CELL SIGNALING

Lectures: Tuesdays and Thursday 11:00 am - 12:20 pm
Location: 140 Burrill Hall
Office hour: To be determined after polling the class
Instructor: Jie Chen, Professor of Cell & Developmental Biology (jiechen@illinois.edu)

Course objectives:
- Emphasis on principles and molecular mechanisms of mammalian cell signaling
- Coverage of major classes of transmembrane receptors and signaling pathways
- Contemporary methods of investigation and the principles of identifying and solving problems related to signal transduction
- Importance of understanding cell signaling illustrated by examples of targeted anti-cancer therapies

Course Moodle at learn.illinois.edu:
- Lecture slides are available the night before lecture, together with all relevant references.
- Other materials including assigned readings, homework assignments, and discussion questions are posted as needed.
- Assignments are distributed, submitted and graded on Moodle.

This course does not use a textbook. Recommended books:
1. Molecular Cell Biology by Lodish et al. (9th edition):
 Chapter 15: Receptors, Hormones and Cell Signaling
 Chapter 16: Growth Factors and Cytokine Signaling Pathways That Control Gene Expression

Readings for the class:
Optional readings: textbooks above; original research and review articles associated with each lecture (PDFs available on class Moodle).
Required readings: articles to be discussed in class, for assignments, and/or for exams.

Honors credits:
James Scholars are welcome to propose creative ideas for projects to earn honors credits in this class. Please arrange a meeting with the instructor early in the semester to discuss selection of projects.

Grading:
75%: two open-book exams, weighted equally
25%: three assignments –
 18% on submitted assignments (6% each; see below for details)
 7% on attendance of in-class discussions (2% each, extra 1% for attending all 3)

Final grade:
A: 85% (average 80 on exams if receiving full credits for assignments)
A-: 80-84%
B+: 76-79%
B: 75%
B- to F: will be assigned as appropriate.
COURSE POLICIES

Academic integrity
For this course we will follow the policies stated in the Student Code, which is available online at http://studentcode.illinois.edu/. All students are expected to adhere to both the letter and spirit of the Code. Any infraction of academic integrity as defined in the Code may result in a course grade of “F”, including any case of facilitating an infraction.
Students are encouraged to work together to study course materials and to discuss problems on assignments. However, each student must work independently on the assignment submissions and on the entire exams (more details below).

Assignments
For each assignment, 50% credit is given for on-time submission. Unexcused late submission of an assignment will result in complete loss of this 50% credit for that assignment. After in-class discussion the student has the option to resubmit answers, and the assignment will then be graded for the other 50% credit.

Exams
Exams will be in-class and open-book. Students are not to communicate with other students or anyone else during the exam. If you have a conflict for one of the exam dates/times, you must inform the instructor within the first week of class.

Disability Accommodations
To obtain disability-related academic adjustments and/or auxiliary aids, students with disabilities must contact the course instructor and the Disability Resources and Educational Services (DRES) as soon as possible. To contact DRES you may visit 1207 S. Oak St., Champaign, call 333-4603 (V/TTY), or e-mail a message to disability@illinois.edu.
Spring 2023 schedule

Dates of assignments and exams are unlikely to change.

Topics are tentative (detailed lecture schedule will be available mid-semester):

Introduction and overview, RTK, modular domains, Ras, MAPK, protein phosphorylation, signaling dynamics, experimental design, kinase regulation, phosphatase regulation, kinase as drug targets, cytokine receptor signaling, TGFβ receptor signaling, TCR signaling, common downstream signaling pathways, cancer immunotherapy, methodologies, GPCR signaling, signaling into the nucleus, signaling in cell proliferation, signaling in cell death and survival.

January 17 Lecture
January 19 Lecture
January 24 Lecture
January 26 Lecture
January 31 Lecture
February 2 Lecture
February 7 Lecture
February 8 Assignment #1 distributed by 9:00 am (Wednesday)
February 9 Lecture
February 11 Assignment #1 due at 11:59 pm (Saturday)
February 14 In-class discussion of Assignment #1 Zoom: https://illinois.zoom.us/j/86066593666?pwd=VnFYUGE1UEtOS0xLLytzeE5TVVWVjQT09
February 15 Assignment #1 revision due at 11:59 pm (Wednesday)
February 16 Lecture
February 21 Lecture
February 23 Lecture

February 28 Office hours during lecture time; **Exam 1**, 7:00 - 9:30 pm
March 2 Lecture
March 7 Lecture
March 9 Lecture

March 11-19 SPRING BREAK
March 21 Lecture
March 22 Assignment #2 distributed by 9:00 am (Wednesday)
March 23 Lecture
March 25 Assignment #2 due at 11:59 pm (Saturday)
March 28 In-class discussion of Assignment #2 Zoom: https://illinois.zoom.us/j/86066593666?pwd=VnFYUGE1UEtOS0xLLytzeE5TVVWVjQT09
March 29 Assignment #2 revision due at 11:59 pm (Wednesday)
March 30 Lecture
April 4 Lecture
April 6 Lecture
April 11 Lecture
April 13 Lecture
April 18 Lecture
April 19 Assignment #3 distributed by 9:00 am (Wednesday)
April 20 Lecture
April 22 Assignment #3 due at 11:59 pm (Saturday)
April 25 In-class discussion of Assignment #3 Zoom: https://illinois.zoom.us/j/86066593666?pwd=VnFYUGE1UEtOS0xLLytzeE5TVVWVjQT09
April 26 Assignment #3 revision due at 11:59 pm (Wednesday)
April 27 Lecture

May 2 Office hours during lecture time; **Exam 2**, 7:00 – 9:30 pm